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Abstract
The Fixing America’s Surface Transportation Act (FAST Act) mandates a Highway Safety Improvement Program (HSIP) for all
states that ‘‘emphasizes a data-driven, strategic approach to improving highway safety on all public roads that focuses on per-
formance.’’ To determine the predicted crashes on a specific roadway facility, the most convenient and widely used tool is the
first edition of Highway Safety Manual (HSM), which provides predictive models [known as safety performance functions
(SPFs)] of crash frequencies for different roadways. Low-volume roads (LVRs) are defined as roads located in rural or subur-
ban areas with daily traffic volumes of less than or equal to 400 vehicles per day (vpd). LVRs cover a significant portion of the
roadways in the U.S. While much work has been done to develop SPFs for high-volume roads, less effort has been devoted
to LVR safety issues. This study used 2013–2017 traffic count, and roadway network and crash data from North Carolina to
develop six SPFs for three LVRs, which can be used to predict total crashes, as well as fatal and injury crashes. This study also
performed a sensitivity analysis to show the influence of traffic volumes on expected crash frequencies. The SPFs developed
in this study can provide guidance to state and local agencies with the means to quantify safety impacts on LVR networks.

The Fixing America’s Surface Transportation Act
(FAST Act) mandates a Highway Safety Improvement
Program (HSIP) for all states that ‘‘emphasizes a data-
driven, strategic approach to improving highway safety
on all public roads that focuses on performance’’ (1).
Because of the emphasis on data-driven strategies, many
studies have focused on understanding the crash occur-
rence and its association with a wide variety of variables.
The methods included in the first edition of the Highway
Safety Manual (HSM) are widely used to predict crashes
on specific roadway facilities (2). Part C of this manual
provides a list of predictive models that can be used to
estimate crash counts on a roadway using other variables
such as segment length, traffic volume, and geometric
characteristics. These models, known as safety perfor-
mance functions (SPFs), are useful for estimating crashes
with the aim of prioritizing safety improvement projects
and different design alternatives. The HSM provides a
series of SPFs (for both segments and intersections) for
three major facility types: 1) rural two-lane two-way
roadways; 2) rural multilane highways; and 3) urban and
suburban highways. For each location type, these SPFs
can be used to estimate the total number of crashes
expected during a given time under certain base condi-
tions. There is a strong recommendation that these SPFs
are needed to be either calibrated or re-estimated using
local condition data to attain high precision.

A significant aspect of the HSIP rulemaking is the
requirement that states must collect and use a subset of
Model Inventory of Roadway Elements (MIRE) for all
public roadways, including low-volume roads (LVRs).
LVRs are defined as roads that have an annual average
daily traffic (AADT) of less than 400 vehicles per day
(vpd), which is typically significantly lower than the
AADT of higher functional roadways. The majority of
the LVRs are part of the three non-federal aid-system
(NFAS) roadway functional classes: 1) rural local (7R);
2) urban local (7U); and 3) rural collector (6R).
Together, the three NFAS roadway functional classes
account for around 75% of the total roadway mileage in
the U.S. The Departments of Transportation and local
transportation agencies use traffic volume count pro-
grams to collect traffic volume data. However, the focus
of these programs is higher functional class roadways
(interstates and principal arterials). Traffic counting on
LVRs is more selective and sparser throughout the net-
work. North Carolina has a handful of count locations
on its local network. Most of these count stations
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provide short-term traffic counts that many agencies
convert into AADT estimates by applying one or multi-
ple adjustment factors. While much work has been done
to develop SPFs for high-volume roads, less effort has
been spent toward low-volume road safety issues. This
study acquired count, roadway, and crash data for
NFAS roads to examine the feasibility of developing
SPFs separately for each of the three functional classes
(6R, 7R, and 7U). The SPFs can be used to predict total
crashes as well as fatal and injury crashes on these
roadways.

Objectives

This study aims to mitigate the current research gap by
developing SPFs for the lower functional classes in
North Carolina. The study results can be used by practi-
tioners in data-driven safety analysis and to support
decision making.

Literature Review

Improving roadway safety remains a top priority of
transportation and safety planners. The traffic safety
research field includes a wide array of research areas and
the most prominent of them is crash data analysis by
which assessment of the safety of a transportation facility
(e.g., interstates, arterials, intersections) can be con-
ducted. The conventional approach has been to establish
relationships between crash frequency and traffic charac-
teristics, roadway inventory, and environmental factors.
The development of a crash prediction model is a means
of capturing complex interactions in safety data, as well
as using engineering judgment and analytical assump-
tions about the crash occurrence. Lord and Mannering
conducted a systematic review of crash frequency studies
and their limitations (3). Savolainen et al. conducted a
similar study on injury severity related studies in 2011
(4). In 2014, Mannering and Bhat summarized analytic
methods used in these two areas with the inclusion of
future directions (5). The key approach in most of the
studies is to identify the relationship between a large vari-
ety of variables and crash occurrence or crash severity.

The majority of model development techniques and
approaches focus on higher functional classes because of
the availability of adequate data. By contrast, only a few
studies have focused on the safety performance of LVRs
because of the difficulty of obtaining adequate and reli-
able data for model development. This section sum-
marizes safety studies on LVRs. Zegeer et al. also
investigated the association between roadway width and
crash occurrence on low-volume (AADT ł 2,000 vpd)
rural roads (6). Roadways with relatively wider shoulders
showed lower crash rates, while shoulder type (paved or

unpaved) was not statistically significant. Caldwell and
Wilson compared injury crash rates on unpaved county
road segments to injury crash rates on all roads in
Wyoming (7). The likelihood of being involved in a crash
on county roads was found to be more than five times
higher than on all roads. In their study, Stamatiadis et al.
(8) identified several contributing factors on LVRs
(AADT ł 1,000 vpd). Achwan and Rudjito examined
road crash characteristics on LVRs by using data from
rural areas (9). The study showed that the key vulnerable
groups were motorcyclists and pedestrians. In his study,
Madsen concluded that 75% of the injured persons and
60% of those killed in LVR crashes were occupants of
nonfarm vehicles (10). The lack of retroreflective signs
and taillights on slow-moving vehicles were identified as
major contributing factors for these crashes. In a study
on speed limits on gravel roads in Kansas, Liu and
Dissanayake performed a survey of county agencies and
conducted analysis by incorporating speed (11). In a sub-
sequent study, Liu and Dissanayake developed logistic
regression models to identify the factors most associated
with crash injury on gravel roads in the same state (12).
The results revealed that failure to use safety equipment,
intoxication, failure to yield, distraction, speeding, aging
drivers, and ruts/potholes increased the probability of
more severe crash occurrence. NCHRP Synthesis 321,
Roadway Safety Tools for Local Agencies: A Synthesis
of Highway Practice, introduced many effective safety
tools to reduce crashes on LVRs (13). Two proactive
safety tools that are included in this report are: Roadway
Safety Audits (RSA) and Roadway Safety Audit
Reviews (RSAR). The report ‘‘Low-Cost Local Roads
Safety Solutions’’ reported the effectiveness of several
key countermeasures that are suitable for low-volume
transportation networks (14). Dell’Acqua and Russo
analyzed safety conditions using the network approach
for a few Italian roadways within the Province of
Salerno (15). Two SPFs were developed for low-volume
two-lane rural roads located on flat/rolling area with a
vertical grade of less than 6% and mountainous terrain
with a vertical grade of more than 6%.

The literature review indicates a gap in SPF
development on LVRs because of the absence of key
variables like AADT. The current study aims to miti-
gate this research gap by developing SPFs for NFAS
roads.

Predictive Methods: An Overview

The predictive method uses the empirical Bayes (EB)
method to calculate the expected number of crashes for a
defined period before and after a safety treatment has
been implemented at a particular site. The EB method
can handle two major issues: sparse datasets and
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regression to the mean (RTM). For short durations,
many sites have no or few crashes. It is unlikely that a
short period can entirely capture the true frequency of
crashes, which results in prediction inaccuracy. RTM
bias can occur when a site experiences an abnormally
high or low number of crashes in one year followed by a
return to a more typical crash frequency the following
year. The EB method uses both the observed number of
crashes at a site and the predicted number of crashes at
similar sites based on the SPFs.

An SPF is an equation used to predict the average
number of crashes per year at a location as a function of
exposure (i.e., AADT and length) and, in some cases,
roadway or intersection characteristics. SPFs can be used
either: 1) by developing a localized SPF for the facility
and certain crash types; or 2) by calibrating existing SPFs
(e.g., HSM SPFs). The predicted number of crashes (N)
at a particular site can be estimated by multiplying three
components: base SPF (CPredicted), Crash Modification
Factors (CMFs), and a calibration factor, C, as shown in
Equation 1.

N =CPredicted 3 C 3
YCMF ð1Þ

For example, exposure is represented by the segment
length and AADT associated with the roadway segment
as shown by the following baseline SPF:

CPredicted = exp b0 +b1 3 ln Lð Þ+b2 3 ln AADTð Þ½ � ð2Þ

where
CPredicted = the predicted crash frequency under base

conditions,
b0,b1 = parameter coefficients,
L= segment length, and
AADT= Annual Average Daily Traffic.
CMFs account for deviations from base conditions in

relation to the roadway and geometric characteristics,
and traffic control devices. In some cases, (e.g., crash
data variation between different jurisdictions or different
time periods within the same jurisdiction), applying a
calibration factor, C, may be a more efficient approach
than developing a new SPF that requires more time and
data. Calibration factors can be estimated by:

C =

Pn
i= 1 Nobs, iPn
i= 1 Npre, i

ð3Þ

where
Nobs, i = the observed annual average crash frequency,
Npre, i = predicted annual average crash frequency,

and
n = sample size, equal to the number of sites in the

calibration process.

The EB method is based on a weighted average princi-
ple. It has been widely used in many safety studies and is
recommended by the Highway Safety Manual (HSM) (2,
16–25). It uses a weight factor, w to combine observed
(CObserved) and predicted crash frequencies (CPredicted) to
estimate the expected crash frequency, CExpected:

CExpected =w 3 CPredicted + 1� wð Þ3 CObserved ð4Þ

where
CExpected = the expected crash frequency,
CPredicted = the predicted crash frequency obtained

from the SPF,
CObserved = the observed crash frequency,
w = a weight factor that depends on the over-

dispersion parameter (k) of each SPF:

w=
1

1+CPredicted 3 k
:

Methodology

In his book ‘‘The Art of Regression,’’ Ezra Hauer states:
‘‘A parametric SPF is a mathematical function of traits
(variables) and parameters. The activity of fitting a para-
metric SPF to data alternates between choosing the vari-
ables from which the model equation is to be made,
determining the form of the function (i.e., how the vari-
ables and parameters should combine into an equation),
estimating the value of the parameters, and examining
the goodness of the fit’’ (26). The schematic of this con-
cept is presented in Figure 1.

The SPF development for NFAS roads in North
Carolina includes several steps:

� Step 1: Develop the database. Acquiring crash,
roadway inventory, and traffic volume data
assigning crashes to the corresponding segments
of the roadway network.

� Step 2: Exploratory data analysis. After compiling
data for candidate independent variables, perform
correlation analysis to identify the best predictors.
Perform exploratory data analysis to identify pat-
terns and clusters.

� Step 3: Develop SPFs. Develop negative binomial
models for the desired roadway networks sepa-
rately for all five injury types—fatal injury (K);
incapacitating injury (A); non-incapacitating
injury (B); possible injury (C); and no injury or
property damage only (O)—as well as for KABC
crashes only. Validate models using residual plots.
If the residual plots are not in the range of the best
fit model, develop decision trees or other data par-
titioning algorithms to identify potential clusters
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inside the data. Instead of using the whole data,
develop SPFs for the clustered data and cross-
examine the residuals again. Repeat the previous
steps until a good-fit model has been developed.

Data Preparation and Exploratory Data Analysis

To better understand the relationship between various
roadway characteristics and safety performance on
NFAS roads in North Carolina, it was first necessary to
assemble a comprehensive database of traffic crash,
roadway inventory, and traffic volume data for the study
network. The data were obtained from different sources
for the five-year period from 2013 to 2017 (see Figure 2).
The precision of SPFs largely depends on the quality of
the data. SPF development requires a comprehensive
crash database that contains various information and
data such as route id, route name, milepost, control sec-
tion, geographic coordinates, collision type, and severity
type among others.

Table 1 shows annual crash frequencies on NFAS
roads in North Carolina. The data show that 444,863
crashes happened during the study period (30% of these
crashes involve some type of injury). From 2013 to 2017,
NFAS roads experienced a 12% increase in crashes.
Table 2 lists the crash frequencies by roadway category
and injury type. Around 80% of the low-volume road
crashes occurred on two-way undivided roadways
(around 80% of the two-way undivided roadways are
two-lane roadways).

Because only 1% of the study crash data had geo-
graphic coordinates, the researchers used the route num-
ber and the milepost to geolocate crashes on the network.
Figure 2 illustrates the flowchart diagram of data pre-
paration activities. The crash database does not differ-
entiate between segment and intersection-related crashes,

though past studies have shown the significance of mak-
ing this distinction (27). This study considered all crashes
without separating segment and intersection-related
crashes. The SPFs developed in this study can be
improved by excluding intersection-related crashes if
more data become available (e.g., distance of crash loca-
tion from the closest intersection).

For each functional class (6R, 7R, 7U) two SPFs were
developed: one for total crashes (KABCO) and another
one for KABC crashes. The original dataset contained
several candidate predictors. Shoulder type, shoulder
width, median type, and median width were considered
for the analysis. After performing a correlation analysis,
only two variables were found to be the best predictors:
segment length (mi) and AADT (vpd).

Table 3 lists descriptive statistics of the key measures.
The total length of the rural local roadways—considered
in the analysis—is 8,161mi (around 75% of the analyzed
LVR network). Urban local (7U) comprise a smaller
proportion of the LVR than the other two roadways.
The minimum threshold of the segment length is consid-
ered as 0.10mi (approximately 500 ft.). The average seg-
ment length ranges from 0.27 to 0.66mi. The traffic
volume is lower on rural local roadways (mean: 590 vpd)
when compared with urban local (mean: 2,233 vpd) and
rural collector (mean: 1,060 vpd) roadways. As LVR
databases lack detailed information about various geo-
metric variables (for example, shoulder width, median
width, median type), the current study is limited to the
model development process based on two key variables
(length and AADT).

Before developing the SPFs, it was important to exam-
ine how the number of yearly crashes changed with
respect to segment length and traffic volume. Figure 3
shows the distributions of KABCO crash frequencies and
Figure 4 KABC crash frequencies (in scatter plot format)

Figure 1. Schematics of parametric SPF development (adapted from 16).
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by segment length and traffic volume for the three func-
tional classes of interest. The plots show that most of the
crashes occurred when the segment lengths were smaller
than 2 mi. For both crash severity groups (KABCO and
KABC) and all roadways, segment length shows a posi-
tive correlation with the number of KABCO or KABC
crashes. The trends are very affirmative for rural local
and rural collector roadways. For traffic volume, these
patterns are somewhat positive. Rural local roadways
show a clear trend between traffic volume and yearly
KABCO or KABC crash frequencies. This exploratory

data analysis (EDA) provides hints about whether and
how crashes on North Carolina NFAS roads depend on
segment length and traffic volume.

Safety Performance Functions (SPFs)

SPFs were developed using AADT data from permanent
sites and short-term counts. The model structure, the
over-dispersion parameter, and the log-likelihood of each
SPF are listed in Table 4. Regression models examine the
average effects of the associated variables and ignore

Figure 2. Flowchart of the data preparation.

Table 1. Yearly Crash Distributions by Injury Types

Year K A B C O Unknown Total

2013 483 706 6,716 16,685 56,577 2,446 83,613
2014 468 719 6,840 16,998 56,410 2,492 83,927
2015 506 796 7,040 18,955 60,282 2,783 90,362
2016 519 1,009 7,216 19,138 62,585 2,792 93,259
2017 496 1,515 7,545 17,494 63,722 2,930 93,702
Grand total 2,472 4,745 35,357 89,270 299,576 13,443 444,863

Note: K = fatal injury; A = incapacitating injury; B = non-incapacitating injury; C = possible injury; O = no injury or property damage only.

Table 2. Crash Distributions by Roadway Category and Injury Types

Roadway category K A B C O Unknown Total

One-way, not divided 16 44 499 1,663 6,596 329 9,147
Two-way, divided, positive median barrier 39 69 932 4,116 12,128 229 17,513
Two-way, divided, unprotected median 121 271 3,485 12,913 38,558 910 56,258
Two-way, not divided 2,294 4,350 30,322 70,154 232,695 11,873 351,688
Unknown 2 11 119 424 9,599 102 10,257
Grand total 2,472 4,745 35,357 89,270 299,576 13,443 444,863

Note: K = fatal injury; A = incapacitating injury; B = non-incapacitating injury; C = possible injury; O = no injury or property damage only.
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subgroup effects in the model development. As a result,
model developments are often geared toward the popula-
tion mean, without consideration of the special site-
specific patterns. This study performed decision tree
algorithms to determine the clustering effect. The results
support the model development for each functional class
separately.

The model fitting is judged by its residuals, which are
the differences between the number of recorded crashes
and the predicted crash counts. A model is thought to fit
well if the residuals are close to zero. The Cumulative
Residual (CURE) plot is a good visualization to show
how well or poorly an SPF can predict crashes for vari-
ous values of an independent variable, which is plotted
on the x-axis of the plot. A horizontal stretch of the
CURE plot implies unbiased estimates in a region of the
variable. By contrast, in regions where the CURE plot
consistently drifts up or down the estimates are biased.
The CURE plot for an unbiased SPF needs to be in the
boundary of two standard deviations. The CURE plots
for both segment length and AADT are shown in
Figures 5 and 6. Figure 7 illustrates the observed versus
expected KABCO crashes for three functional classes.

By sorting the data by each variable (AADT, segment
length, or any other predictor variable of interest),
CURE plots can be created to assess the precision of the
functional form of these variables in the model. The
CURE plots developed for 6R, 7R, and 7U are mostly
within the boundary of two standard deviations. The few
places where the CURE plots are outside the two stan-
dard deviation boundaries are shown in black parabolic
shapes. For example, the CURE plot corresponding to
7R KABC crashes (top right of Figure 5) shows an area
where the residuals are slightly outside the boundary.
This indicates that the estimates developed for segment
lengths between 4 and 5.5mi will be somewhat biased.

Sensitivity Analysis

The goal of the sensitivity analysis was to determine the
impact of AADT estimation errors on the expected crash
frequencies and, therefore, the final ranking of the sites.
North Carolina DOT can adopt the developed SPFs and
use them in the EB method to determine the most pro-
mising locations based on the expected crash frequencies.
The sensitivity analysis was separately performed for

Table 3. Descriptive Statistics

Roadway functional class
Number of
segments

Total segment
length (mi)

Crash
severity Statistic

Count of
yearly crashes

Length
(mi)

AADT
(vpd)

Rural local (7R) 12,386 8,160.70 KABCO Min. 0 0.1 5
Max. 110 7.0 19,950
Mean 2 0.7 590
SD 6.01 0.5 710.2

KABC Min. 0 0.1 5
Max. 38 7.0 19,950
Mean 3 0.7 590
SD 1.54 0.5 710.2

Urban local (7U) 3,097 848.8 KABCO Min. 0 0.1 10
Max. 48 1.8 110,000
Mean 1 0.3 2,233
SD 3.02 0.2 4,005.1

KABC Min. 0 0.1 10
Max. 15 1.8 110,000
Mean 0.21 0.3 2,233
SD 0.72 0.2 4,005.1

Rural minor collector (6R) 3,110 1,849.10 KABCO Min. 0 0.1 5
Max. 148 4.1 9,200
Mean 3 0.6 1,349
SD 8.15 0.5 1,059.3

KABC Min. 0 0.1 5
Max. 47 4.1 9,200
Mean 0.67 0.6 1,349
SD 2.21 0.5 1,059.3

Note: AADT = annual average daily traffic; vpd = vehicles per day; K = fatal injury; A = incapacitating injury; B = non-incapacitating injury; C = possible

injury; O = no injury or property damage only; min. = minimum; max. = maximum; SD = standard deviation.
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Figure 3. Segment length and AADT vs. yearly KABCO crashes.

Figure 4. Segment length and AADT vs. yearly KABC crashes.
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each functional class and crash severity group (KABCO
and KABC). The analysis involved the following steps:

� Step 1: Apply the EB method.
� Step 2: Determine the rank of each segment based

on the results obtained from Step 1.
� Step 3: Determine the percentile of the rank of

each segment.

� Step 4: Increase the AADT of each segment
by 10%, 50%, 100%, 250%, and 500% by keep-
ing the rest of the segments and variables
unchanged.

� Step 5: Repeat Steps 1 to 4 separately for each seg-
ment and AADT percentage increase. The end
result is repeating Steps 1 to 4 185,930 times =
[(3,110 segments in 6R) + (12,386 segments in

Table 4. Developed SPFs

Roadway functional class Crash severity Safety performance function Over-dispersion parameter Log-likelihood

Rural local (7R) KABCO N7R, tot = 2:4793Length0:9623AADT0:035 0.353 20090.20
KABC N7R, kabc = 0:6323Length1:0053AADT0:034 0.348 –5624.30

Urban local (7U) KABCO N7U, tot = 1:6913Length0:8423AADT0:071 0.952 –808.10
KABC N7U, kabc = 0:4883Length1:0623AADT0:071 0.772 –1,286.60

Rural collector (6R) KABCO N6R, tot = 2:4323Length0:9883AADT0:090 0.406 10,188.20
KABC N6R, kabc = 0:6413Length1:0233AADT0:084 0.326 –826.70

Note: SPF = safety performance functions; AADT = annual average daily traffic; K = fatal injury; A = incapacitating injury; B = non-incapacitating injury; C =

possible injury; O = no injury or property damage only.

Figure 5. CURE plots by segment lengths.
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7R) + (3,097 segments in 7U)] 3 (5 AADT per-
centage increases) 3 (2 crash severity groups).

� Step 6: Calculate the percentile rank change of
each segment by comparing the initial rank of
each segment (no AADT change) against the rank

obtained when AADT was increased by a certain
percentage.

Figures 8 to 10 show the distribution of the rank percen-
tile changes for different AADT groups and functional

Figure 6. CURE plots by AADT.

Figure 7. Observed vs. expected crashes.
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classes in box-violin plot format. It shows that a 10%
increase in AADT will not have a significant effect on
the expected crash frequencies and therefore the final seg-
ment ranking. Higher percentage changes of AADT val-
ues are associated with higher percentile rank changes.
This trend is visible for all functional classes. These fig-
ures also show that the average percentile rank changes
are overall higher for 6R and 7U compared with those of
7R. Further, because the traffic volume of the majority
of rural local roads is lower than 2,000 vpd, the box-
violin plots for higher volumes (greater than 2,000 vpd)
are skewed toward lower percentile rank changes. This
trend can be partially attributed to the fact that the
AADT coefficients (0.035 and 0.034) of the two SPFs
developed for 6U (for KABCO and KABC crashes
respectively) are significantly smaller than those of the
other two functional classes. Another potential reason
that relates to the small AADT coefficients is that the
sample size of 7R (12,386) is significantly larger than
those of 6R (3,110) and 7U (3,097). Further, the CURE
plots of 7R (Figure 6) show that the residuals for the
AADT range 0–10,000 vpd are not close to zero, indicat-
ing that the SPFs may need to be improved. One possible
improvement is to divide 7R into subgroups based on
geography or roadway/geometric characteristics and

develop separate SPFs for each subgroup. Other poten-
tial improvements may include changing the form of the
SPFs, adding more variables and interaction terms, and
changing the objective functions that are used to arrive
at the parameter estimates. In general, the results show
that AADT estimation errors can affect the expected
crash frequencies and associated percentile rank changes.

Conclusion

Predictive models help identify roadway locations with
the greatest potential for safety improvement and quan-
tify the expected safety performance of different facili-
ties. This approach combines roadway inventory, traffic
volume, and traffic crash data. The results can be used
to support decision making and allocation of safety
funds and also help to better understand how data-
driven safety analysis is affected by AADT. The models
and associated risk mapping not only help agencies make
smart decisions but also inform the public as to what
safety benefits they can expect from their investment
(28). Many safety studies focused on major highway
facilities (e.g., freeways, arterials, interchanges, or inter-
sections) or on the effectiveness of specific treatments
(e.g., traffic control devices, barriers, edge line, rumble

Figure 8. Rank percentile change for different AADT groups (rural local).
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Figure 9. Rank percentile change for different AADT groups (urban local).

Figure 10. Rank percentile change for different AADT groups (rural collector).
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strips). Little effort has been dedicated to the safety
improvements on LVRs. This lack of effort is because of
the unavailability of adequate data on the LVR network.
In many cases, the most recent information regarding
LVRs is not recorded electronically.

This study acquired roadway inventory, traffic vol-
ume, and crash data for five years (2013–2017) in North
Carolina. This study has provided three major contribu-
tions. First, it developed a procedure of using local road-
way network data in estimating the safety performance
of these roadways. Researchers can adopt this procedure
in reproducing the models using local data. Second, this
study developed SPFs for three roadway functional
classes in North Carolina separately for total crashes
(KABCO) and KABC crashes. The models are validated
by visually examining the developed CURE plots, which
was not performed in other ‘‘low-volume SPF’’ studies.
The third contribution of this study is the impact analy-
sis of AADT estimation errors on safety analysis. The
results show that AADT values on NFAS roads affect
the expected crash frequencies and associated percentile
rank changes.

There are several limitations of this study. This
study did not separate segment and intersection-related
crashes as the current study did not acquire the dis-
tance values to the intersections from the crash loca-
tions. This study did not perform an extensive analysis
of the outlier values of AADT. The general perception
is that the LVRs have lower AADT compared with
high functional roadways. However, a definite thresh-
old has not been determined yet. Future studies can
cross-examine some of the outlier AADT values used
in this current study for the refinement of the data and
more precise SPFs.
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